
Software to Sketch Interface Designs

Beryl Plimmer
Department of Computer Science,

University of Auckland
Private Bag 92019, Auckland,

New Zealand

b.plimmer@auckland.ac.nz

Mark Apperley
Department of Computer Science

University of Waikato
Private Bag 3105, Hamilton,

New Zealand

m.apperley@cs.waikato.ac.nz

Abstract: This paper describes the development and evaluation of an electronic sketch environment for interface
design. The tool provides a pen-based interface on an electronic whiteboard for designing Visual Basic forms, it
is tightly integrated into the Visual Basic IDE. Our evaluation showed that this type of environment is likely to be
of benefit to novice programmers as it provides an enticing shared workspace for small groups and encourages
checking and revision.

Keywords: Sketching, public space interfaces, informal design, novice programmers

1 Introduction
Learning to program is difficult, in simplistic terms
the novice programmer must learn the programming
language syntax, and how to decompose problems
and recompose them as an algorithm. User interfaces
are a significant part of problem solutions and an
obvious focus to explore problem requirements.

Designers from a wide range of disciplines
initially hand-sketch their ideas because informal
tools offer the freedom to work with partly formed or
ambiguous ideas. Generally once a design is well
defined it is transferred to a computer-based tool
which offers other advantages such as easy editing
and distribution. Student programmers tend not to
hand-sketch their interfaces because they see it as a
waste of time.

We have developed an informal design tool
(Freeform) that is tightly integrated into a
programming IDE. It uses pen input on a digital
whiteboard to imitate the informality of a low-
fidelity tool, but at the same time offers the
functional support expected in a computer
environment. The computer environment also makes
it possible to simulate the sketched interface in
operation.

 Our evaluation showed that students using
Freeform designed more appropriate interfaces
because they were more involved in the design

process. They also enjoyed the experience and
developed a more positive attitude to sketching.

2 Background
This project brings together ideas from graphic
design, program design, and educational psychology.
The user interface is an important part of any
program and offers a concrete expression of ideas
that can be used as a focus of discussions. For this
reason we looked at how designers in other
disciplines work with ideas.

Most designers start by hand-sketching ideas.
Low-fidelity tools (pen and paper) are preferred
because there are no constraints or off-task decisions
required (Gross 1998). However typical computer-
based design environments require widget selection,
placement, sizing and alignment. This has been
shown to interfere with the design process (Goel
1995) because the designer is distracted from the
meta task by the requirement to make decisions
before they are appropriate such as: the choice
between a radio button or a check box, and
unimportant detail such as alignment. Designers
have also found that the tidy product of computer
tools implies a higher level of commitment to the
design, for both the designer and clients, than is
intended and that the finished appearance of
computer produced designs means that fewer

changes are entertained (Wong 1992). Sketching
allows designers to work quickly with ideas and
while doing so order and structure the problem and
solution space (Tversky 1999). Working with a
sketch also prompts thought about the underlying
functional requirements.

There are striking similarities between the way
expert programmers describe program creation and
how designers work. Lammer (1996), interviewed a
number of well known programmers; they
consistently describe programming as an art, skill
and science, for example Charles Simonyi said “The
first step in programming is imagining” (Lammers p.
15) . Lammer’s book also includes a number of
sketches that are the original designs for software the
interviewees had written; from this we can conclude
that some expert programmers express their designs
as sketches.

Clearly the first task when writing a program is to
understand the problem. Novice programmers often
have difficulty with this fundamental step, even for
simple tasks. Creating a program requires the
deconstruction of a problem into its composite parts
and reconstruction of it as an algorithm; this
abstraction from reality is difficult. One way to get a
better understanding of a problem is to work with
scenarios. Scenarios provide concrete examples of an
abstract problem. Carroll (2000), has written
extensively on this technique for defining complex
problems, and Rettig (1994) describes scenario
based techniques he has used successfully with
students to improve their understanding.

Learning to program is a learning task in much
the same way as any other learning. Learning with
peers in small groups is often more productive than
being ‘taught’. In fact Vygostsky (1978), contends
that most learning is from peers rather than teachers.
Also learning is most effective if there is quick
evaluation and reinforcement. This is referred to as
the experiential learning cycle which has been
describe by a variety of authors (e.g. Kolb 1984) and
can be summarised as “Do, Review, Revise and
Reflect”. These general ideas are at the heart of
constructivist theories of learning that contend that
each of us must construct our own knowledge and
that theory together with practice are the most
powerful learning experiences.

A number of others have created software to
support hand sketching of designs. Landay and
others (Lin, Newman et al. 2000; Landay and Myers
2001) created Silk for interface form design and
Denim for web page design. Silk is a standalone
form design tool that recognises a range of widgets
and includes a storyboard and run mode. In run

mode some of the widgets have functional
behaviours, for example scroll bars can be moved up
and down. Denim is a web page design tool; it
includes five levels of zooming to aid with the design
of page hierarchies and navigation. Both of these
tools support conversion into other formats. Knight
is a UML diagramming tool developed by Damm,
Hansen et al. (2000) that is integrated with the
WithClass CASE tool, it includes an interesting mix
of formal, semiformal and informal representation in
the one diagram. CASE diagrams can become very
large so this tool includes a radar window to aid
navigation around the design space. Bailey, Konstan
et al (2003) have created a sketch tool for
multimedia applications’ design. This tool supports
the inclusion of other media such as pictures or
sound bites. They have also put more emphasis on
supporting functionality in run mode with navigation
and the ability to play the media.

3 Software Development
The goal is to provide an environment that retains
the informality of the low-fidelity approach while
providing the support expected of computer
environments, and for the sketching software to be
an integrated part of the programming IDE.

A digital whiteboard provides a space where a
small group can work together sharing the image and
interaction, and is likely to be able to provide the
editing functionality and document management that
is expected for computer applications such as cut,
copy, paste, resize, and save.

Ideally student programmers should be able to
move freely along the design continuum from
informal, high-level design, to detailed formal
design. The informal environment should be pen-
based and put little constraint on what can be drawn.

One of the main complaints students have about
pre-sketching their interfaces is that it is ‘a waste of
time’. By integrating the sketching environment into
the IDE and the software intelligently interpreting
the sketch so that it can be converted into the IDE
form designer it is likely that students will see it as a
valuable way to work with no time overhead.

Using scenarios as concrete examples of
problems helps students to clarify the problem
constraints. We suggest that a computer based sketch
environment should allow the user to easily check a
sketch with scenarios.

Taking these points into consideration, we have
developed an integrated sketch interface (Freeform)
for Visual Basic� (VB). Sections 3.1 and 3.2
describe the development of our prototype system

through two major iterations and the usability study
carried out between the iterations. In section 4 we
describe a comparative study we conducted of
students designing user interfaces using Freeform or
a normal whiteboard.

3.1 First Prototype
With the first prototype of Freeform we were mostly
concerned with the technical feasibility of the project
and in providing a platform to undertake a
preliminary usability study. In this section we
describe the physical interface, the software and
summarise the findings of the usability study of this
prototype.

To support this work we have constructed a low-
cost large interactive display screen (LIDS)
(Apperley, Dahlberg et al. 2001). It is comprised of a
standard data projector, rear projected onto a screen
approximately 900mm wide by 1200mm high with a
Mimio whiteboard digitiser attached to the screen to
provide the interaction.

The Mimio pens are used in mouse emulation
mode where the pen nib provides left mouse down,
mouse move and mouse up events to the program.
Although a right-mouse button and double clicks are
supported by the Mimio interface, they are
cumbersome to use. We built the program so that all
interaction is via left-mouse pen actions.

In this environment there is no passive pen
tracking as there is with a mouse. It required some
experimentation to structure simple interaction,
particularly for editing. Early testing indicated that a
conservative multi-step approach was easier to learn
and use. While the general setup works well, some
users commented that the pen was too large and there
was too much play in the nib switch which made it
difficult to write with.

The software has three major components; a
sketch space, recognition engine, and a VB form
creator. The sketch space is a deliberately minimalist
environment where the users can draw, write and
edit. In drawing mode the user can sketch freely but
should ultimately end up with glyphs that roughly
depict the VB controls that they wish to represent
(Figure 1). In handwriting mode the user pens text
that is interpreted as a label or caption.

Figure 1 Sample student sketch using first prototype

The recognition algorithm we implemented (see
below) requires shapes to be drawn in a single
stroke; we found that users had no difficulty with
this. We separated drawing from writing to help with
recognition; this did cause some initial confusion for
users and ultimately we would like to eliminate this
modality.

Others have used gestures for editing functions,
such as undo, copy or delete; we implemented only a
delete gesture. We had overloaded the gesture
(Figure 2a) using it for delete and as a text holder;
this caused confusion for both the users and the
software. For the second prototype we used a
different gesture for delete (Figure 2b).

Figure 2 Text and Delete Gestures

In edit mode the user can move, cut, copy, paste
or resize sketch components. In this mode each
sketch element (individual strokes for drawing ink or
words for writing ink) is surrounded by a bounding
box. Users can select a single element by clicking
inside its bounding box (Figure 3a) or a group of
elements by lassoing them (Figure 3b).

Figure 3 Single and multiple element selections

The bounding box of a selection is highlighted
and has perimeter handles and a central handle. The
centre handle moves the selection, while perimeter
handles resize. Although these functions work well,
one of the most requested enhancements was an undo
feature. We also decided that being able to convert

ink from drawing to writing or visa versa would be
useful until we can integrate the two inking modes.
Our goal is to provide an intuitive design
environment where all the interaction is via the pen
and LIDS; the first usability study indicated that we
were well on the way to doing this.

Pen strokes are recognised immediately after
completion. Most sketch systems provide immediate
feedback by, tidying the sketch, changing the colour
or displaying the name of the recognised glyph.
Except for the delete gesture, which invokes an
immediate response, we chose to delay disclosure
until the user decides the sketch is complete so as to
not interrupt the design process. Some users need to
experiment to feel confident that recognition is going
to happen, but having done this they are comfortable
with leaving the recognition until later.

The recognition engine has two parts; gesture
recognition to classify the stroke, and a rule base to
combine strokes and map them to VB controls.
Rubine’s (1991) algorithm is used for the stroke
recognition. A library of classes of shapes for
drawing and writing are maintained by the software
for matching against; these are fully exposed to the
user who can add, change or delete shapes and
classes of shapes. Students were happy with the
performance of the shape recognition; over the
usability study we achieved a 90% success rate. We
found the recognition rate for letters was very poor
so writing is left unrecognised. Achieving
satisfactory word recognition became a goal for the
second prototype.

When the design is finished and the user wishes
to create a VB form the rule base is used to establish
the relationships between ink strokes. There are three
categories of relationship; combined strokes,
containers and single stroke gestures (Figure 4). Two
strokes can be combined to create one VB control;
for example a long rectangle with a triangle inside
will be mapped to a drop-down list. Container
controls such as frames are particularly important as
VB uses containers to create mutually exclusive sets
of option buttons.

A user interface is provided to the rule base
which allows the specification of any intrinsic VB
control (Figure 5). In the left section of the form the
user specifies the control type and whether this is to
be a single stroke, joined or container control;
multiple specifications of a control are possible. In
the middle section the user specifies the primary
shape for the control, the relationship with subsidiary
shapes (such as beside, below) and whether they are
required or optional. The right section specifies how
the VB control properties will be generated. For

example the top position of the control can be set as
the top position of the primary or secondary shape or
the topmost point of either shape.

Figure 4 Sketch glyphs to VB controls

We did not usability test this part of the system
and have not endeavoured to include checking for
ambiguous definitions or other user errors.

Figure 5 Sketch to control mappings

Before the form is created the user has the ability
to alter the recognition engine’s decisions by
choosing the type of control from a list. Once
checking is completed a VB form is generated
(Figure 6). While the VB form accurately represents
what the user has drawn it looks untidy. A set of
controls that look the same on the sketch result in a
set of different looking controls on the VB form.
This is contrary to our expectations in a formal
environment. Standardising the sizes and aligning
controls on the VB form became another goal of the
second prototype

The overall comments from the students were
positive, but they also provided a number of issues to
be addressed

• Hardware – a better pen (outside the scope
of this project)

• Drawing/writing – changing modes is
distracting. Either eliminate modes or make
it possible to change the ink mode

• Editing – provide undo
• Recognition – recognise writing
• Transformation – tidy the VB form by

standardising sizes and aligning controls.

Figure 6 VB Form created from Figure 1 sketch

3.2 Second Prototype
The second prototype expanded the system to
provide for multiple sketches and a storyboard view.
A run mode was also added to allow users to
interactively check their sketches. In addition we
addressed most of the issues that were identified in
the usability study described above. We
acknowledge that the Mimio pens are not perfect for
this type of interface; improvements at this level are
being addressed elsewhere. This section describes
the changes to the software and the repeat usability
study.

Figure 7 Sample from second prototype

The sketch space (Figure 7) is based on the first
prototype but includes added functionality for
editing. An unlimited undo function was added; each
sketch has its own undo stack. We also added a
clipboard so that sketch elements can be copied and
pasted on to the same or a different sketch. We were
unable to integrate writing and drawing modes (see
below) so have provided the ability to select ink and
change it from writing to drawing or visa versa. A
grid was added to aid form transformation (see
below); this can be displayed in drawing mode. The
undo and the ability to change the mode of ink were

well received by users and some commented that the
grid made it easier to draw and write.

The storyboard view (Figure 8) is similar to that
provided by Silk (Landay and Myers 2001); it
provides an overview of all sketches and allows the
user to add navigation links between sketches that
can be used in run mode. Because the storyboard has
quite limited features (adding, moving or deleting
links and moving or deleting sketches) we were able
to provide a modeless interface. On a pen down
action the software determines whether the pen is
positioned on a navigation link endpoint and if it is
assumes a link move. Either end of a link can be
dragged to a new position, or the trashcan to delete
the link. A drag from any other point in a sketch will
either create a new link if the terminating point is in
another sketch or move the sketch if the termination
point is in an empty slot. A sketch can also be
trashed by dragging it to the trashcan. This interface
proved to be very easy and intuitive to use.

Figure 8 Storyboard View

The run mode (Figure 9) facilitates active
checking of designs; in this mode it is as if a
transparent overlay is placed over the sketch with
hotspots at the source points of navigation links. The
underlying sketch is inert. The user can draw or write
on the overlay and navigate between forms by
clicking the hotspots. The run mode ink can be
cleared, but not edited. It stays on the sketches while
the user is in run mode, but is erased when the user
returns to the sketch space. While this did not cause
any comment during the usability study in the larger
evaluation that followed it was clear that it would
have been better not to remove the ink, but simply to
hide it when the user returned to sketch mode.

Figure 9 Sketch in Run Mode

We achieved limited word recognition by
matching words against a vocabulary, adding two
extra features to Rubine’s Algorithm (1991), and
limiting input to lower case letters. We compiled a
vocabulary by extracting captions from hundreds of
sample VB programs. We observed that the
algorithm often confused letters like ‘b’ and ‘d’ or
‘m’ and ‘w’ so we added features which gave the x
and y point-of-balance of the ink stroke. The
algorithm produces a list of probable letters for a
given stroke in decreasing order of probability. We
then match the input word against the vocabulary.
The word from the vocabulary with the lowest mean
letter position from the probable letter lists for each
stroke is the successful match. If the best match has a
mean letter position greater than three then no match
is found. The recognition rate for words is not high;
we can achieve about 70% recognition of words that
are in the dictionary, using our own training set and
being careful to form letters correctly. Students
during the studies achieved much lower recognition
rates. However it is easy to correct words by
selecting from the vocabulary and while we would
like to achieve a better result, users were prepared to
work with this.

We also improved the tidiness of the VB form
(Figure 10) by aligning controls to a grid and adding
to the rule base to standardise the sizes of controls.
The grid size can be changed by the user; we found
400 to 600 twips (30 - 40 pixels) worked best. The
software aligns the top left corner of each ink
stroke’s bounding box to the closest grid intersection
point. The rule base allowed for any control property
to have a fixed value or a unit value. For example
radio buttons can be set at a fixed height of x pixels
and edit boxes can be set to have a height that is a
multiple of y pixels. When calculating control sizes
we rounded all values down as experience indicated
that most sketch elements were larger than those
required on a form. The forms from this prototype

were much more satisfactory and users were
generally pleased with the results.

Figure 10 VB form from Figure 6 & 8 sketch

4 Evaluation Study
We used the second prototype to evaluate the use of
such an electronic sketch tool as a design
environment for student programmers. We
conducted a study where eight small groups of
students (2 or 3) completed two interface design
tasks. All of the students were from a first-year VB
programming course.

For one task they used the Freeform environment
described above and for the other they sketched a
design on an ordinary whiteboard and then created a
VB form from their design in the normal manner.
The problems were designed to be of a similar type
and difficultly, one was a simplified book catalogue
form, the other a dog registration form.

We evaluated the study through; participant
questionnaires, review of the design products by an
independent expert, observation, and review of the
learning process by an educational psychologist.

We questioned the students about their
experience before the study and after each task was
completed. Before the study they answered three
questions about: their level of experience of using
whiteboards for design task, their belief on the
usefulness of sketching designs, and their current
practice of sketching designs. While most thought
that sketching designs was a good idea, there was no
correlation between this and their current practice,
with few hand sketching a design before they created
the interface in VB.

After each task was completed the students
answered ten questions on their enjoyment, problem
understanding and the ease of use of the
environment. Statistical analysis of the co-variance
between the mean group responses for the two tasks

indicated at a significant level of greater than 95%
that:

• they enjoyed the Freeform task more
• it increased their motivation to learn

programming
• they would like to use Freeform as a

program planning tool in the future.
A further two were more positive for Freeform at

a greater than 90% level:
• they felt prepared to complete the program
• they found checking the scenarios was easy

Of the remaining four questions two were most
influenced by the order of the task, with the second
task being easier, and the other two questions were
higher for Freeform but not at a statistically
significant level. Seventeen of the twenty
participants stated that given a choice of a standard
whiteboard, Freeform, or nothing, Freeform would
be their preferred design environment. Finally a
comparison between their view of the value of
sketching before the study and after each task
showed that Freeform gave a significant boost to
their rating of the importance of sketching designs.

We observed that students made many more
changes to their sketches in the Freeform
environment. Most of these changes were made after
they had checked their designs in run mode. The
changes resulted in the designs created with
Freeform being more appropriate solutions for the
problem (our independent expert scored most
groups’ Freeform design higher). A typical example
of a change that was made after checking in run
mode was the space for address data required by one
of the problems; most groups initially drew a single-
line edit box. Three out of the four groups who did
this problem using Freeform finished with space for
multiple address lines. Only one of the four groups
who did this problem on the standard whiteboard
finished with space for multiple address lines.

We asked an educational psychologist, to review
the video tapes; he thought there were a number of
possible reasons for the increased changes and
therefore better designs created in Freeform. He
suggested that there is a lower cost and lower risk in
the electronic environment. Changes are lower cost
because of the ability to move and resize existing
elements and lower risk because of the undo facility.
He also suggested that the run mode encouraged
active participation in the checking process where
the normal whiteboard checking was more passive.
Along with this the immediacy of the sketch and
check with the electronic environment provided

quick feedback and completion of the learning cycle
which is likely to encourage more activity.

Another typical change that was made more
frequently in the electronic environment was
changing an edit box to a drop down list. Students
told us that the electronic environment made them
think more about the functionality of the program
than the whiteboard environment and this is why they
made more of these types of changes.

5 Discussion and Conclusions
This project has brought together ideas from HCI,
design, usability engineering and educational
psychology to develop a new computer supported
environment for informal interface design.

Research from other disciplines suggests that
hand drawing initial designs is preferable to formal
computer design tools that require selection and
placement of widgets because informal diagrams
allow the designer to leave parts of the design
ambiguous and the unfinished look of a sketch
encourages change. From this comes our
commitment to a simple sketch space where the user
is not distracted by notification of the recognition
engine interpretation of ink.

Our software is intended for small group use on a
public-space (whiteboard). We have noticed some
differences in our approach to inking and recognition
in comparison with private-space pen interfaces such
as PDAs. We have put an emphasis on maintaining
the image and in-place inking that is not required in a
private space. This precluded us from using such
techniques as the letter-by-letter type recognition that
is common on PDAs. Better handwriting recognition
is an outstanding challenge.

From usability engineering and scenario based
design we have adopted the ideas of being able to
check designs while they are still in sketch form. The
run mode we added to the second prototype was very
effective at engaging the students in the checking
process and resulted in better designs.

We choose to evaluate our environment against a
static sketch environment and have found some
significant advantages in the computer supported
environment, particularly for checking sketches.
How our environment would compare with checking
sketches in a normal IDE form designer is something
that should be investigated.

From an educational perspective we have
provided a shared work space where small groups of
students can work cooperatively on a problem. They
enjoyed working with a novel tool and the ease of
checking and changing the sketch along with the

rapid feedback encouraged the students to alter the
form as they thought more carefully about the
problem requirements and better ways to provide an
easy-to-use interface.

We made decisions about how and where to
integrate sketching into the programming IDE. It
would be possible to add sketching to the main form
design space of an IDE. We chose to remove it so
that there was a definite feel of being somewhere
else and working in a different mode. Sketching
software could also be a standalone tool; however we
liked the idea of students being able to move along
the design continuum with a minimum of disruption.
The current version of Freeform does not change a
sketch to reflect changes in the IDE design
environment; this is an enhancement we would see as
being useful.

This software has been developed and evaluated
for VB, but the principles should hold true for other
similar programming IDEs such as Delphi, C++. In
fact, as the recognition libraries and rule-base are
exposed to the users it would be a simple task to
adapt the software for use with other types of tools.
Our tool supports only the intrinsic VB6 controls; it
would be possible to extend to more complex
controls, however the rules required to differentiate
widgets become more complex as the number of
widgets increase.

In conclusion we believe that public-space,
informal design environments have real potential for
classroom use. Students enjoy and learn by working
together and the ability to provide editing facilities
and other modes such as the run mode we
implemented in the second prototype can add
positively to the learning experience.

Acknowledgements
The assistance of Matt Jones, Ray Littler and Tony
Morrison for their help with respectively: the
evaluation of the designs, statistical analysis, and
comments on the learning processes, and the many
students who have contributed to these studies is
gratefully acknowledged.

6 References

Apperley, M., B. Dahlberg, et al. (2001).
Lightweight capture of presentations for
review. IHM-HCI, Lille, ACM.

Bailey, B. P. and J. A. Konstan (2003). Are Informal
Tools Better? Comparing DEMAIS, Pencil
and Paper, and Authorware for Early
Multimedia Design. CHI 2003, Ft
Lauradale, ACM.

Carroll, J. M. (2000). Making Use: Scenarios and
Scenario-Based Design. Symposium on
Designing Interactive Systems.

Damm, C. H., K. M. Hansen, et al. (2000). Tools
support for cooperative object-oriented
design: Gesture based modelling on and
electronic whiteboard. Chi 2000, ACM.

Goel, V. (1995). Sketches of thought. Cambridge,
Massachusetts, The MIT Press.

Gross, M. (1998). The proverbial back of an
envelope. IEEE Intelligent Systems: 10-13.

Kolb, D. A. (1984). Experiential Learning:
Experience as the Source of Learning and
Development. New Jersey, Prentice-Hall
Inc.

Lammers, S. (1996). Programmers at work:
Interviews with 19 programmers who
shaped the computer industry. Redmond,
Microsoft Press.

Landay, J. and B. Myers (2001). "Sketching
Interfaces: Toward more human interface
design." Computer 34(3): 56-64.

Lin, J., M. W. Newman, et al. (2000). Denim:
Finding a tighter fit between tools and
practice for web design. Chi 2000, ACM.

Rettig, M. (1994). "Prototyping for tiny fingers."
Communications of the ACM 37(4): 21-27.

Rubine, D. (1991). Specifying gestures by example.
Proceedings of Siggraph '91, ACM.

Tversky, B. (1999). What does drawing reveal about
thinking. Visual and spatial reasoning in
design, Cambridge USA.

Vygostsky, L. S. (1978). Mind in society: The
development of higher psychological
processes. Cambridge MA, Harvard
University Press.

Wong, Y. Y. (1992). Rough and ready prototypes:
Lessons from graphic design. Human
Factors in Computing Systems CHI '92,
Monterey.

